

Status of the Russian Laser Tracking Network

M.V. Baryshnicov, V.B. Burmistrov, V.P. Vasiliev, V.D. Shargorodsky

Goals of Laser Tracking by Russian Stations

- Estimation of the GLONASS ephemeris and frequency/time accuracy during the navigation system operation period.
- Upgrade of spacecraft motion models.
- Calibration of microwave SC tracking systems.
- Better precision in Earth rotation parameter determination .
- Better precision of measurements for space geodesy and Earth gravity field parameter determination.
- Angular and photometric monitoring of spacecraft in high elliptical orbits (including SC failure cases).
- Failure-case backup of microwave SC tracking systems.
- Participation in international SC laser tracking programs for geodesy and geophysics, as well as for producing catalogues of SC and space debris.

Laser Tracking Station near Komsomolsk-on-Amur

Upgrade completed:

- Introduction of a coude path
- New laser transmitter:

_ = 0,532 nm _ = 250 ps E = 2,5 mJ Rep. rate = 300 Hz

RMS of normal points: 5 mm

Telescopes

Technical Building

SLR station on top of Maidanak mountain (Usbekistan)

General view 2750 m above the sea level.

The station is operable. Since December, 2002, it operates under the Russia/Usbekistan agreement on its joint control and use.

SLR station near Moscow

Telescope, dome, and operator room

The station is in regular operation since 2003.

Data delivery to ILRS will be provided after permission to participate in international programs.

Basic Parameters

Range	Angular Measurements	Photometry
Orbit height: Nighttime – up to 36 000 km Daytime – up to 6 000 km	Visual star magnitude: 14 ^m - 15 ^m	Photometry Visual star magnitude: 12 ^m - 13 ^m Brightness determination error: max 0,2 ^m
RMS NP error: 3 – 5 mm	RMS measurement error for SC: 2 arc sec	Brightness determination error: max 0,2 ^m

Frequency drift monitoring of GLONASS on-board oscillators

- The accumulated experience on GLONASS operation shows that the navigation field quality depends primarily on time/frequency errors caused by the on-board frequency standard instability.
- Thus, currently it is important to estimate the on-board standard frequency drift and to find the corresponding time/frequency correction values.
- ■To implement this technology, the SLR station near Moscow is additionally equipped with H₂-standard having a stability of 7 10⁻¹⁵ per day, as well as by a high-accuracy GLONASS/GPS signal receiver (ASHTECH Z-18) and corresponding software.

GLONASS frequency drift monitoring operator workplace

PC High-accuracy receiver Z-28

H_z – frequency standard

GPS time-scale drift 01-05-04 to 31-05-04

Transportable SLR station

Under cover

During transportation

In operation state

It is planned to install the station at the Baikonur launching site during 2005.

Altay Optical/Laser Ranging Center

Regular operation is planned to start: 3-rd quarter of 2004.

Basic specifications

- П
- Ranging of CCR-equipped SC in orbits as high as 23 000 km (nighttime) and 6000 km (daytime)
- Angular measurements of SC with brightness as low as 14^m
- SC photometry
- NP RMS (30 sec averaging):

Range: less than 0.4 cm

Angles: less than 2...5 arc sec

Modular SLR station subsystems

- Az/El mount with cover and tracking systems (2 arc sec accuracy)
- laser transmitter with optics unit: _ = 0,532 nm E = 2,5 mJ Rep. rate = 300 Hz
- Rx/Tx collimator (250 mm diameter)
- High-sensitivity TV system for angular measurements
- 250-mm diameter objective
- TV photometer
- GLONASS/GPS controlled time/frequency standard
- Automatic Weather Station

Operator workplace

Technical Features

With the small (250-mm-diam.) receive optics, measures are taken to enhance the power budget:

- Miniature diode-pumped laser TX, 0.75 W average output power at 532 nm (2.5 mJ, 300 Hz)
- MCP PMT (Hamamatsu)
- TX beamwidth 10...15 arc sec (2 arc sec pointing accuracy)
- Holographic narrow-band filter (1 _ bandwidth, transmission 85%)
- High-sensitivity TV camera (MCP image intensifier+CCD) operating in photon-counting mode, FOV=1°)

Technical Features

- Transportation: dissembled, single module weight less than 50 kg.
- System total weight: less than 350 kg.
- Assembling and adjustment by two qualified operators: during 1 work day.
- After assembling, automatic angular sensor alignment using catalogue stars takes 30 min. (at nighttime).
- Ranging bias determination: using a built-in calibration system.
- Cable length aloes placing the optical system as far as 50 m from the other equipment.
- Manufacturing is plan of more than 10 such stations starting from 2005 (one station per year).

Conclusion

The Russian SLR tracking network is currently in rapid development. After the next five years, it will comprise 12-14 stations, uniformly distributed over the state territory.